A Little Python — Part 1

Introducing Programming with Python

Preface

Not a complete course in a programming language
O Many details can’t be covered
O Need tolearn as you go

My programming ‘style’ is not considered ‘pythonic’
O | program like an overly careful C programmer
O "Python” people generally hate my code

I'll do my best to give examples in good style here

Learning ANY

Syntax

O Whatis a valid statement
O What statements have meaning

Variables, data types, data structure

Control flow, branching, testing, loops, iteration
Input/Output, I/O, read/write files

Procedures, subroutines

Objects, encapsulation of code + data

Additional Resources

Online Courses/Tutorials

O http://docs.python.org/tutorial/index.html

O https://developers.google.com/edu/python/ | %

O http://www.codecademy.com/fracks/python
Only 13 hours — do it this weekend!!!

Learning Python book (5™ edition) ~ $50 ($30)
O Great if you know another language R EEa ...

Head First Python ~ $35 ($25)
O Good forreal beginners
O Although it's now “Python 3"

Why Pythone

Interpreted (vs compiled)

Inferactive

[Tiki:~] dwmc$% python
Python 2.7.10 (default, Aug 22 2015, 20:33:39)

[GCC 4.2.1 Compatible Apple LLVM 7.0.0 (clang-700.0.59.1)] on darwin

Type "help", "copyright", "credits" or "license" for more information.

>>>

Just “try it" in the interpreter
O If it works in the interactive interpreter — then it works

Try this ...

Launch python
O Get acommand line
O Type "Python"

Print output

>>> print "This is a string of text"
This is a string of text

Assign values to variables

>>> five = 1234
>>> abc = "this is some text"
>>> alist = [1, 2, 'c', abc, None]

Try this ...

Output the values of variables

>>> print five

1234

>>> print abc

this is some text

>>> print a_ list

[1, 2, 'c', 'this is some text', None]
>>>

Another Quick Example

Python interpreter continuations

To show how this works we define a simple function

>>> def counter(i):
k=0
while(k<i):
print k
k +=1

>>> counter(5)

Basic Data Types

Empty value - None
Boolean
Strings

Numbers

O Infeger values

O Real numbers, Rational values, Floating point values,
Decimal values

Basic Data Types - None

The empty value
O Special value, None
This is not the same as other empty values:
O " (empty string) or
O [] (empty list) or
O {} (empty dictionary)

Basic Data Types - Boolean

Boolean - truth values (two of them)
O True
O rFalse

Boolean is the result of a comparison
O "abc" == (False)
O "1" == (False)
O 5 ==5.0 (True)

Basic Data Types - Strings

Strings are sequences of characters

Assigning string values

>>> foo = "this is a string"
>>> bar = 'this is also a string'
>>> gpecial = '''python allows

. multi line

. string contants'"''

>>>

Unicode strings

O Important for web work

O The ‘U’ designation makes a string unicode
O More on this later

Basic Data Types - Integers

Assigning integer values
>>> x = 123

>>> y = 111

>>> z =1

>>> print x+z

124

>>> print x+y

234

>>> print y+z

112

>>>

Integers support arbitrary, dynamic size

Basic Data Types - Float

Assigning real/floating point values

>>> n = 123
>>> k = 1.11
>>> i = 1.3
>>> print n+k
124.11

>>> print n+i
124.3

>>> print i+k
2.41

>>>

Float support arbitrary, dynamic size, automatic
conversion

Operations are the way you change variable values,
compare, or manipulate values

You've seen several "operators” already in prior examples
— can you describe them or name them?@

Operations

You've seen ...

Assignment Operator — assign a value to a variable, copy the value of
one variable to another variable

O What character(s)?

Addition Operator — add two values
O What character(s)?

Less Than Comparison Operator — test whether a value is less than
another

O What character(s)?

Equality Comparison Operator — test whether two values are equal
O What character(s)?

Operations

Some operations

X =y

X or y

X and y

not x

X + Y X =Y, X

Xx*y, x /vy

O 01, {}

x==y, x<y, x>y, x<=y, x>=y, xl=y

X in y, x not iny, X is y, X is not y

Try a few of these

Example operations

>>> n = 124
>>> m = 2
>>> k = 10.5
>>> i = 1.3

>>n / m
62

>>> n * m
248

>>n /i
95.384615384615387
>>>n // i
95.0

>>> (i==k)
False

>>> (i<=k)
True

>>> (il=k)

True

More example operations

>>> foo = "this is a string"

>>> bar = "this is a string"

>>> foo+tbar

'"this is a stringthis is a string'
>>> foo-bar

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: unsupported operand type(s) for -: 'str' and 'str
>>> foo*bar
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: can't multiply sequence by non-int of type 'str'
>>> foo in bar
True
>>> foo is bar
False

>>> bar in foo

True

Sidebar — the "import” statement

"import" is a mechanism to extend what python can do
O Adds features that are not "built in"

O Adds things that don’t get used all the time

O Temporary - only added while the interpreter keeps running

You will see this in many examples and it can be
confusing at the start — watch for it

mport”

Sidebar - Example

Example features that are not built in

O Random numbers
O Operating system specific features (mac/linux/windows)

Try some

>>> import math

>>> import random

>>> import aflac

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ImportError: No module named aflac

>>> random.random()

0.14584529741440777

>>> random.randint(5,151)

30

Operators — Manipulating strings

Strings have some special operators
s = "This sample has CAPS and hypen-ated words"
i=25
j = 11
s[i]
s[i:]]
len(s)
s.find('is")
replace('is', 'as')

S.
s.split('-")
s.isdigit()
S.

lower ()

Try a few of these

Example — Manipulating strings

>>> s = "this is a string"

>>> s2 ="a-string-with-no-spaces"
>>> s3 = "30"

>>> s[5]

vy

>>> 5[5:6]

vy

>>> s[5:7]

'ig!

>>> g.find('is"')

2

>>> s.replace('is','as"')

'thas as a string'

>>> s2.split('-")

['a', 'string', 'with', 'no', 'spaces']
>>> s3.isdigit()

True

>>>

Generating Output

Simple output

print statement (is a print function in Python 3)

>>> gl = "the value of k is"

>>> k = 1.45

>>> print sl,k

the value

>>> print

of k is 1.45
k,sl

1.45 the value of k is

>>> g2 =
>>> print
the value
>>> print
the value

>>>

"bob's big boy"

sl,s2

of k is bob's big boy
sl+s2

of k isbob's big boy

Program Structure

Function, procedure, method, subroutine (synonyms)

def counter(i):
k=0
while(k<i):
print k
k += 1

Procedures and functions are how we keep some logical
control over complex programs

Very few programs can be written as a very long list of
code statements

This is important, we need to dissect this

Program Structure

def counter(i):
k=0
while(k<i):
print k
k += 1

def - is a special word - think 'define’

counter — this is what we are defining — it is a new
procedure (or function), we pick the name

(i) — this is a parenthesized list of parameters that the
procedure ‘counter' will take

Program Structure

def counter(i):
k=0
while(k<i):
print k
k += 1

def is an example of a "block’” structure

In python a "block” is indented
O Statements that end with a colon ™" indicate a block
O Everything in the block is indented the same amount

O Be careful, tab characters and space characters are not the
same amount even if they "look" the same visually

Program Structure

def counter(i):
k=0
while(k<i):
print k
k += 1

Parameters are the values that are given to a procedure

(or function) when the procedure is called and executed

O In this case when counter (5) is called the value 5 is
assigned to the variable i while counter is running

O If a variable z=3, and we called counter(z) then the value
of z is assigned to the variable 'i' while counter is running.

Program Structure

def counter(i):
k=0
while(k<i):
print k
k += 1

This procedure has two statements in the "block™

O A simple assignment statement
O And a nested "block”
We'll get to "while" statements later

Program Structure

def counter(i):
k=0
while(k<i):
print k
k += 1

This procedure has two statements in the "block™
O A simple assignment statement
O And a nested "block”

We'll get to "while" statements later ...

Our nested block has two statements

Define Simple Procedures

def bob():
print "Bob is great!"

def notBob():
print "Bob is a fink!"

def liveBob():
print "Long live Bob!"

def bobParam(superlative):
print "Bob is a",superlative

Procedures can return a value

def bob():
print "Bob is great!"

def notBob():
print "Bob is a fink!"

def liveBob():
print "Long live Bob!"

def bobParam(superlative):
print "Bob is a",superlative

def bobConcat(superlative):
print "Bob is a",superlative
return superlative+" "+"dude"

Bob Procedure Output

>>> bob()

Bob is great!

>>> notBob()

Bob is a fink!

>>> liveBob()

Long live Bob!

>>> varBob("chocolate coated candy!")

Bob is a chocolate coated candy!

>>> BOB()

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

NameError: name 'BOB' is not defined

>>>

Python Programming
Environment

IDLE (sucks)

lpython
O Iron python - very popular, nice "workbook" feature

Python Additions to Eclipse
O PyDev

Komodo Edit (nice)
O Komodo IDE (expensive)

Plain text editor
O Old school

Python Plain old Text Editors

Mac OS

O Sublime Text

O Text Wrangler
O SubEthaEdit

O Smultron

O Komodo Edit

Assignment |

Write 5 short programs (some are a single line)

Make the python interpreter calculate and print 13! (13
factorial)

Make the python interpreter output "Happy New Year!"
using 3 different string variables.

Define three procedures that each returns one string of
"Happy", "New", and "Year!". In the python interpreter
execute the three procedures and show what they
output.

Assignment 1 - continued

Write 5 short programs

Write a new procedure using the ones you created in
the prior problem. Make your new procedure print
"Happy New Year!”

Write a procedure that takes two parameters and adds
them together. The procedure should write output that
looks like an addifion statement. For example, if the
procedure was given the values 3 and 4 the output
should be something like: "3 + 4 = 7"

