
Analyzing Tweets:
Introducing Text Analysis
Entities, parsing, regular expressions, frequency analysis

Outline

¤  What are entities?

¤  Parsing text
¤  Simple parsing

¤  Regular expressions

¤  Frequency analysis

Entities

¤  Usernames, Tags, URL
¤  @dwmcphd, #HotFaculty, http://bit.ly/ur12c

¤  Simple case, just pull them from the JSON

¤  Other “entites”
¤  Dates, Place Names, People, emoticons

¤  General “entity resolution” is a difficult problem
¤  When is a “thing” in text a meaningful thing?

Simple Text Parsing

¤  Built-in string functions – work on all strings
¤  split(), rsplit()

¤  strip(), rstrip(), lstrip()

¤  endswith(), startswith()

¤  find(), rfind(), index(), rindex()

¤  upper(), lower()

¤  replace()

¤  partition(), rpartition()

Simple Text Parsing - example

s1 = "In this string a date might look like 1/27/2014 but sometimes people write that
14/01/27. Recognizing string dates can be tricky. For example some people use 01-27-14
as a date. "

>>> s1.find(“this")

3

>>> s1.endswith(”date")

False

>>> s1.endswith(”date.”)

True

>>> s1.partition(".")

('In this string a date might look like 1/27/2014 but sometimes people write that
14/01/27', '.', ' Recognizing string dates can be tricky. For example some people use
01-27-14 as a date.')

>>> s1.rpartition(". ")[2]

'For example some people use 01-27-14 as a date.'

Simple Twitter Entity Identification

t1 = "#SEAHAWK SUNDAY. #Hawks over the 40whiner's and to the
SuperBowl!!!!!! GO #HAWKS, UTAH IS BEHIND YA!!!!"

t2 = "The 49ers will be no match for my hawks. #Seahawks
#NFLPlayoffs"

t3 = "RT @sixflagsDK: Whose ready? Seems OUR hawks are 49er fans!
#QuestforSix #GoNiners #NFC ##Seahawks #49ers http://t.co/C0Xbv3v7ss"

¤  Some issues here - maybe just find the hashtag entities?
¤  Break each tweet into tokens with split()

¤  Look for each token that startswith() a hash tag “#”

simple_parse_hashtags()

def simple_parse_hashtags(tweet=""):
 hash_tags = list()

 if tweet:

 token_list = tweet.split()

 for token in token_list:

 if token.startswith('#'):
 hash_tags.append(token)

 return hash_tags

Hashtag

t1 = "#SEAHAWK SUNDAY. #Hawks over the 40whiner's and to the SuperBowl!!!!!! GO
#HAWKS, UTAH IS BEHIND YA!!!!"

t2 = "The 49ers will be no match for my hawks. #Seahawks #NFLPlayoffs"

t3 = "RT @sixflagsDK: Whose ready? Seems OUR hawks are 49er fans! #QuestforSix
#GoNiners #NFC ##Seahawks #49ers http://t.co/C0Xbv3v7ss"

>>> tl1 = simple_parse_hashtags(t1)

>>> print tl1

['#SEAHAWK', '#Hawks', '#HAWKS,']

>>> tl2 = simple_parse_hashtags(t2)

>>> print tl2

['#Seahawks', '#NFLPlayoffs']

>>> tl3 = simple_parse_hashtags (t3)

>>> print tl3

['#QuestforSix', '#GoNiners', '#NFC', '##Seahawks', '#49ers']

>>>

Non-Trivial Parsing

¤  What if we wanted to get dates from our first sample
string or find dates in tweets?
¤  s1 = "In this string a date might look like 1/27/2014 but sometimes

people write that 14/01/27. Recognizing string dates can be tricky. For
example some people use 01-27-14 as a date."

¤  Break it into tokens (words) with split

¤  Check each word to see if the “/” character was there

¤  Not impossible, but could be tedious

¤  Matches a small number of cases

¤  Regular expressions are a more general solution

Regular Expression Concept

¤  Regular expressions are designed to find & match a
pattern (a regular sequence of characters & digits).
¤  http://

¤  ftp://

¤  Jan. 27, 2014

¤  & ã ©

¤  Figure 3

¤  #seahawks, #gohawks, #hawks

Sample Regular Expression Strings

¤  r'(\d{1,2}?/\d{1,2}?/\d{4})|(\d{1,2}?/\d{1,2}?/\d{2})’
¤  Matches and captures dates like 1/5/2017 or 1/2/17

¤  Two possible ways of matching the year

¤  r'&(#?x?\d+|[^;]+);’
¤  Matches and captures HTML entities like ã ¾

©

¤  ur'(?i)\b((?:https?://|www\d{0,3}[.]|[a-z0-9.\-]+[.][a-z]
{2,4}/)(?:[^\s()<>]+|\(([^\s()<>]+|(\([^\s()<>]+\)))*\))+
(?:\(([^\s()<>]+|(\([^\s()<>]+\)))*\)|[^\s`!()\[\]{};:
\'".,<>?\xab\xbb\u201c\u201d\u2018\u2019]))’
¤  Matches a URL!!!

Patterns in Regular Expressions

¤  Patterns are built from strings of characters
¤  Special Characters

¤  Quantifiers

¤  Special Sequences/Positions

Patterns in Regular Expressions

¤  Special Characters
\ escapes special characters.

. matches any character

^ matches start of the string

$ matches end of the string

[5b-d] matches any chars '5', 'b', 'c' or 'd’

[^a-c6] matches any char except 'a', 'b', 'c' or '6'

R|S matches either regex R or regex S

() a capture group,

¤  Quantifiers

¤  Special Sequences/Positions

Patterns in Regular Expressions

¤  Special Characters

¤  Quantifiers
* 0 or more

+ 1 or more

? 0 or 1

{m} exactly 'm'

{m,n} from m to n.

{m,n}? from m to n, as few as possible

¤  Special Sequences/Positions

Patterns in Regular Expressions

¤  Special Characters

¤  Quantifiers

¤  Special Sequences/Positions
\A Start of string

\b Matches at word boundary

\B Matches not at word boundary

\d Digit

\D Non-digit

\s Whitespace

\S Non-whitespace

\w Alphanumeric

\W Non-alphanumeric

\Z End of string

Regular Expression Methods

¤  First you need to import the re module

>>> import re

¤  This is the default regular expression module in Python

Regular Expression Methods

¤  search(<expression>,<text>)
¤  Find the expression, return a Match object

¤  match(<expression>,<text>)
¤  Find expression at start of text

¤  findall(<expression>,<text>)
¤  Find all instances, list of strings or tuples ordered by

optional match position

¤  finditer(<expression>,<text>)
¤  Find all instances in an iterator of Match objects

Try out some regular expressions

>>> import re

>>> s1 = "In this string a date might look like 1/27/2014 but sometimes people
write that 14/01/27. Recognizing string dates can be tricky. For example some
people use 01-27-14 as a date."

>>> match = re.findall(r'(\d{1,2}?/\d{1,2}?/\d{4})|(\d{1,2}?/\d{1,2}?/\d{2})',s1)

>>> print match

[('1/27/2014', ''), ('', '14/01/27')]

>>> txt = "HTML <"entities"> can be parsed ©DWMC"

>>> match = re.findall(r'&(#?x?\d+|[^;]+);',txt)

>>> print match

['lt', 'quot', 'quot', 'gt', '#169']

>>>

Try out some regular expressions

>>> import re

>>> t1 = "#SEAHAWK SUNDAY. #Hawks over the 40whiner's and to the SuperBowl!!!!!!
GO #HAWKS, UTAH IS BEHIND YA!!!!"

>>> t2 = "The 49ers will be no match for my hawks. #Seahawks #NFLPlayoffs"

>>> t3 = "RT @sixflagsDK: Whose ready? Seems OUR hawks are 49er fans!
#QuestforSix #GoNiners #NFC ##Seahawks #49ers http://t.co/C0Xbv3v7ss"

>>> m1 = re.findall(r'(#\S*#|#\S*|\S*#)',t1)

>>> m2 = re.findall(r'(#\S*#|#\S*|\S*#)',t2)

>>> m3 = re.findall(r'(#\S*#|#\S*|\S*#)',t3)

>>> print m1

['#SEAHAWK', '#Hawks', '#HAWKS,']

>>> print m2

['#Seahawks', '#NFLPlayoffs']

>>> print m3

['#QuestforSix', '#GoNiners', '#NFC', '##', '#49ers']

>>>

Regular Expressions

¤  Python 2.7 RE Cheatsheet
¤  http://tartley.com/?p=1349

¤  http://www.cheatography.com/davechild/cheat-sheets/python/

¤  Always tricky

¤  What should you do if you can’t figure it out?

Regular Expressions

¤  Python 2.7 RE Cheatsheet
¤  http://tartley.com/?p=1349

¤  http://www.cheatography.com/davechild/cheat-sheets/python/

¤  Always tricky

¤  What should you do if you can’t figure it out?
¤  Just have to try it

Counting Tokens - Frequency

Frequency

¤  Different things that we might count
¤  Counting words

¤  Counting hashtags

¤  Counting mentions

Frequency

¤  Building off the examples from last time
¤  Demo counting words

¤  Top 100

¤  Chart frequency

