
Analyzing Similarity
Exploring two similarity techniques, TF-IDF and Jaccard Distance

Outline

¤  TF-IDF
¤  Term Frequency – Inverse Document Frequency

¤  Jaccard Distance

Frequency Analysis

¤  Last Analysis Interlude
¤  Generated term frequencies

¤  Tracked (charted) term frequency change over a week

¤  How different is enough difference?

Frequency Analysis

¤  Last Analysis Interlude
¤  Generated term frequencies

¤  Tracked (charted) term frequency change over a week

¤  How different is enough difference?

¤  Frequency alone is not enough
¤  Normalization can help

¤  Normalize over what

Collections/Corpus

¤  Collection or a corpus
¤  This is some set of documents

¤  Can we use terms to identify one or more documents in
the collection?

¤  The frequency of the terms in a document could be used
to find the document

TF-IDF

¤  Term Frequency – Inverse Document Frequency
¤  We normalize terms in each document

¤  The rarity/commonality of term helps distinguish one
document from another

Tweet Corpus/Documents

¤  What is the Document?
¤  A single tweet?

¤  An hour of tweets?

¤  A day of tweets?

¤  All tweets by a single person?

¤  What is the Corpus?
¤  The complete set of tweets

Sample Code

¤  Meeting Schedule page
¤  explore_tfidf.py

¤  Bits of code that help build tf-idf

¤  This sample code is usable, but NLTK (Natural Language
Tool Kit) has implementations of this too

Demo code

¤  Procedures
¤  make_doc() – doc data structure

¤  build_corpus() – corpus data structure

¤  tf() – calculate normalized term frequency

¤  idf() – calculate inverse document frequency

¤  tf_idf() – calculate the tf-idf based on tf() and idf()

¤  doc_top_n() – list top N terms of the doc

¤  doc_has() – check whether a doc has a given term

Demo

¤  explore_tfidf.py

Using TF-IDF

¤  TF-IDF is really for searching and finding documents in a
corpus

¤  TF-IDF can be thought of as a similarity measure
¤  Given a set of terms, which documents in the corpus are

most similar?

¤  A cluster of related documents

¤  The current code does not do that, probably useful to
explore that issue

Other Similarity Measures

¤  TF-IDF is a limited similarity measure

¤  Cosine similarity
¤  Vector space model

¤  Do two vectors point in the same direction?

¤  Code in explore_tfidf.py could be used to create scored
term vectors (described in the book, Russell)

¤  Jaccard Similarity (Jaccard Distance)

Jaccard

¤  How similar are these strings?
text1 = "this is a string of text that has words in it"

text2 = "this string also has some words, but it is different"

text3 = "other text might have stuff, if strings were what we test"

Jaccard

¤  How similar are these strings?
text1 = "this is a string of text that has words in it"

text2 = "this string also has some words, but it is different"

text3 = "other text might have stuff, if strings were what we test"

¤  Maybe use the number of tokens (words) that are the
same?

Jaccard

¤  How similar are these strings?
text1 = "this is a string of text that has words in it"

text2 = "this string also has some words, but it is different"

text3 = "other text might have stuff, if strings were what we test"

¤  Maybe use the number of tokens (words) that are the
same?

¤  1.0 – (#_of_the_same_tokens / total_#_of_unique_tokens)

Quick little test of our intuition

from nltk.metrics.distance import jaccard_distance

text1 = "this is a string of text that has words in it"

text2 = "this string also has some words, but it is different"

text3 = "other text might have stuff, if strings were what we test"

print jaccard_distance(set(text1.split()),set(text2.split()))

print jaccard_distance(set(text2.split()),set(text3.split()))

print jaccard_distance(set(text1.split()),set(text3.split()))

Demo Code

¤  Procedures
¤  query_date() – same as before, query the DB

¤  create_tid_dict() – create a dictionary of tweet id and tweet

¤  get_comparison_text() – return text to use for distance
comparison

¤  clustered_key() – return whether or not this key has been
clustered

¤  dump_cluster_info() – print out some information about the
clusters

¤  build_tweet_cluster() – actually build the clusters

Demo

¤  explore_jaccard.py

Quick Summary

¤  Explored
¤  TF-IDF – get term based scores

¤  Can think of this as a term based clustering. Given a set
of terms, which documents are closest to those terms.
Sometimes we call those terms a “query”

¤  Jaccard Distance

¤  What is the term based overlap between two
documents? We can cluster based on this measure

¤  Trouble with short text (aka tweets)

Other Similarity Metrics

¤  Cosine similarity
¤  Mentioned this one earlier in the lecture

¤  Student’s t-score (or Chi-Square test)
¤  Used as an n-gram (bi-gram, tri-gram) measure – assumes a

normal distribution of the co-occurance of words

¤  Edit Distance (Levenshtein distance)
¤  How many one character edits are needed to change one

string into another?

¤  This might be good for short text, like tweets (given some
data cleaning)

