Analyzing Similarity

Exploring two similarity fechniques, TF-IDF and Jaccard Distance



Outline

TF-IDF
O Term Frequency - Inverse Document Frequency

Jaccard Distance



Frequency Analysis

Last Analysis Interlude

O Generated term frequencies
O Tracked (charted) term frequency change over a week

How different is enough difference?¢



Frequency Analysis

Last Analysis Interlude

O Generated term frequencies
O Tracked (charted) term frequency change over a week

How different is enough difference?¢

Frequency alone is not enough
O Normalization can help
Normalize over what



Collections/Corpus

Collection or a corpus
O This is some set of documents

Can we use terms to identify one or more documents in
the collection?

The frequency of the terms in a document could be used
to find the document



TF-IDF

Term Frequency - Inverse Document Frequency
O We normalize terms in each document

O The rarity/commonality of term helps distinguish one
document from another



Tweet Corpus/Documents

What is the Documente

O Asingle tweete

O An hour of tweets?

O A day of tweetse

O All tweets by a single person?

What is the Corpus?e
O The complete set of tweets



Sample Code

Meeting Schedule page
O explore_tfidf.py

Bits of code that help build tf-idf

This sample code is usable, but NLTK (Natural Language
Tool Kit) has implementations of this too



Demo code

Procedures

make_doc() - doc data structure

build_corpus() — corpus data structure

tf() — calculate normalized term frequency

idf() — calculate inverse document frequency
tf_idf() — calculate the tf-idf based on tf() and idf()
doc_top_n() —list top N terms of the doc

doc_has() - check whether a doc has a given term



Demo

explore_tfidf.py



Using TF-IDF

TF-IDF is really for searching and finding documents in a
COrpus

TF-IDF can be thought of as a similarity measure

O Given a set of ferms, which documents in the corpus are
most similare

O A cluster of related documents

The current code does not do that, probably useful to
explore that issue



Other Similarity Measures

TF-IDF is a limited similarity measure

Cosine similarity
O Vector space model
Do two vectors point in the same directione

O Code in explore_tfidf.py could be used to create scored
term vectors (described in the book, Russell)

Jaccard Similarity (Jaccard Distance)



Jaccard

How similar are these strings?

textl
text2
text3

"this is a string of text that has words in it"
"this string also has some words, but it is different’

"other text might have stuff, if strings were what we test"



Jaccard

How similar are these strings?

textl = "this is a string of text that has words in it"
text2 = "this string also has some words, but it is different"
text3 = "other text might have stuff, if strings were what we test"

Maybe use the number of tokens (words) that are the
samee



Jaccard

How similar are these strings?

textl = "this is a string of text that has words in it"
text2 = "this string also has some words, but it is different"
text3 = "other text might have stuff, if strings were what we test"

Maybe use the number of tokens (words) that are the
samee

1.0 — (#_of_the_same_tokens / total_#_of_unique_tokens)



Quick little test of our intuition

from nltk.metrics.distance import jaccard distance

textl = "this is a string of text that has words in it"
text2 = "this string also has some words, but it is different"
text3 = "other text might have stuff, if strings were what we test"

print jaccard _distance(set(textl.split()),set(text2.split()))
print jaccard _distance(set(text2.split()),set(text3.split()))
print jaccard distance(set(textl.split()),set(text3.split()))



Demo Code

Procedures

O qguery_date() - same as before, query the DB

O create_fid_dict() — create a dictionary of tweet id and tweet

O get_comparison_text() —return text to use for distance
comparison

O clustered_key() —return whether or not this key has been
clustered

O dump_cluster_info() — print out some information about the
clusters

O build_tweet_cluster() — actually build the clusters



Demo

explore_jaccard.py



Quick Summary

Explored
O TF-IDF — get term based scores

Can think of this as a term based clustering. Given a set
of terms, which documents are closest to those terms.
Sometimes we call those terms a “query”

O Jaoccard Distance

What is the term based overlap between two
documentsg We can cluster based on this measure

Trouble with short text (aka tweets)



Other Similarity Metrics

Cosine similarity
O Mentioned this one earlier in the lecture

Student’s t-score (or Chi-Square test)

O Used as an n-gram (bi-gram, fri-gram) measure — assumes a
normal distribution of the co-occurance of words

Edit Distance (Levenshtein distance)

O How many one character edits are needed to change one
string info anothere

O This might be good for short text, like tweets (given some
data cleaning)



