Leveraging ML for Analysis

Outline

- Classifying Input
- Features, feature extraction
- Training
- Evaluation

Types of ML

- Machine Learning (ML) is a computational approach to classifying or labeling types of input
- Two broad approaches
 - Supervised
 - ☐ The learning is based on a training set of data that has been labeled in advance (often by hand)
 - Unsupervised
 - Learning is inferred from unlabeled data

Types of Classification/Labeling

- Binary classification
 - Answers the question does this label/classification apply?
 - Yes or No
 - Assume dichotomous labels (classes)
- Multiple classification
 - Answers the question does this input belong to one of several different categories?

Binary Classifications

- Simple sentiment analysis
 - Is this tweet "happy" or "sad"?
- Generalize to any binary valence
 - Positive to Negative
 - Bright to Dark
 - Introverted to extroverted
- How might this fail?

Sentiment in Twitter A Query Operator

REST API

Search

Sentiment in Twitter A Query Operator

□ Scroll

Sentiment in Twitter A Query Operator

Demo

- Try out Twitter Sentiment operators
- How could we try this?

Lexicon Based Analysis

- Twitter sentiment is an example of 'lexicon' based sentiment analysis
 - The lexicon appears to be limited to a few emoticons:
 - □ :):-):(:-(... maybe a few others (hard to tell)
- Could this be improved with a better lexicon?
 - What words would you use?

Lexicon Based Analysis

- Positive words in our lexicon (dictionary)
 - good great awesome outstanding excellent
- Negative words in our lexicon
 - horrible terrible crappy awful
- How would we use a lexicon to analyze tweets?

Lexicon Based Analysis

- How could we improve a lexicon approach?
 - Increase the lexicon?
- Do all words carry the same weight (postive, negative)

Word 1	< or > or =	Word 2
awesome	?	great
better	?	best
angry	?	mad
bonkers	?	great

VADER

- Valence Aware Dictionary and sEntiment Reasoner
 - A lexicon based approach (large dictionary of words)
 - All words in the lexicon are scored
 - Parse text, look up each token in the dictionary aggregate score
- Let's look at how this can work

VADER Demo

explore_vader.py

General Classification Problems

- Suppose you wanted to classify data using some other categories?
- How would you build a classifier?

Process for Creating a Classifier

- Collect Data
- Create a sub-sample
- Pick one (or several) classification algorithms to try
- Select key features
- Score the sub-sample, positive/negative examples
- Train Classifier
- Validate Classifier
- Apply Classifier

Process for Creating a Classifier

- Collect Data
- Create a sub-sample
- Pick one (or several) classification algorithms to try
- Select key features
- Score the sub-sample, positive/negative examples
- Train Classifier
- Validate Classifier
- Apply Classifier

Exercise

- Write a program to dump some tweets as CSV
- Output:

,331156160898011136,"I feel so good after running 4.5 miles :D just burnt like 400 calories :D #exercise #fat #gotta #loose #weight"

Samples to Explore

- In hade user module, ml directory
 - Classification.py a basic object
 - ClassifyTweet.py a subclass of Classification
- Sample code
 - explore_feature_selection.py
 - explore_classification.py

Labeled CSV Tweet data

- fitness_label_data1.csv
 - Dump based on simple_sample.py (using the file output option)
 - Labeled positive and negative labeling
 - Must have
 - u 'label'
 - 'tweet_text'

Labeled CSV Tweet data

- Two samples for the fitness data
 - fitness_label_data1.csv
 - fitness_label_data2.csv

Process for Creating a Classifier

- Collect Data
- Create a sub-sample
- Pick a Classifier
- Select key features
- Score the sub-sample, positive/negative examples
- Train Classifier
- Validate Classifier
- Apply Classifier

Feature Selection

■ What are the 'features' of tweets?

■ How could you decide which features are important?

Demo Feature Selection

Demo Classification

Interpreting Top Features

```
Most Informative Features
  #Swimming = True
                        negati : positi =
                                             4.7 : 1.0
                        negati : positi =
  #gym = True
                                             4.7 : 1.0
  #fitness = True
                        negati : positi =
                                             3.9:1.0
  #RunKeeper = True
                        positi : negati =
                                             3.4:1.0
                        positi : negati =
                                             3.2:1.0
  completed = True
  today. = True
                        negati : positi =
                                             2.8:1.0
  #Workout = True
                        negati : positi =
                                             2.8:1.0
  bring = True
                        negati : positi =
                                             2.8:1.0
```