


HCDE 530 Vis Lecture: Building Interactive Web Visualization in Python via Plotly/Dash

Nan-Chen Chen Feb 8, 2018

What we have learned in this class

Basic Python Syntax & Usages

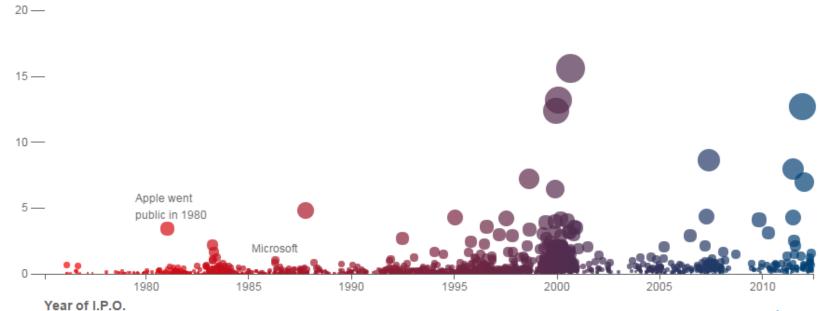
Ways to collect & store tweets

What we will learn in the two VIS lectures

Basic Python Syntax & Usages

Ways to collect & store tweets

Visualize & share analysis results


An example: The Tech I.P.O. Vis by New York Times

Company value In billions of today's dollars 25 —

The Tech I.P.O.'s

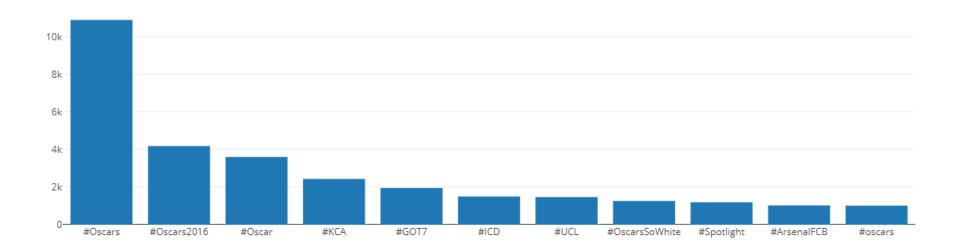
Since 1980, there have been about 2,400 technology, Internet and telecom initial public offerings. Until this week, the largest by market capitalization was Google, which was valued at \$23 billion, or about \$28 billion in today's dollars.

Some common tools for building visualization

Some common tools for building visualization

Plotly & Dash

https://plot.ly/python/getting-started/


https://plot.ly/dash/

A simple demo

Hello Dash for HCDE 530

This is a simple Dash application for HCDE 530

Top Oscar 2016 hashtags on Feb 23, 2016

Outline of today's lecture

Basics (40 mins)

- Installing packages & running simple barchart codes (15 mins)
- Barchart code explanations (10 mins)
- Exercises with other datasets (or your own data) (15 mins)

Break (5 mins)

Basic Visualization Concepts with Real Examples (25 mins)

More Examples about Other Chart Types (20 mins)

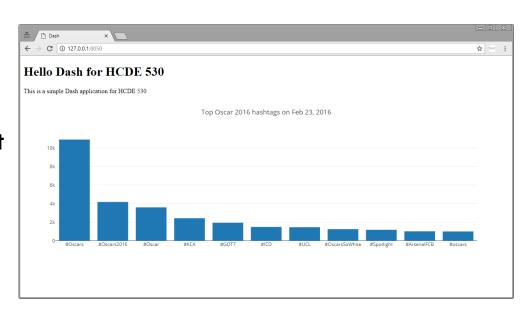
Wrap Up

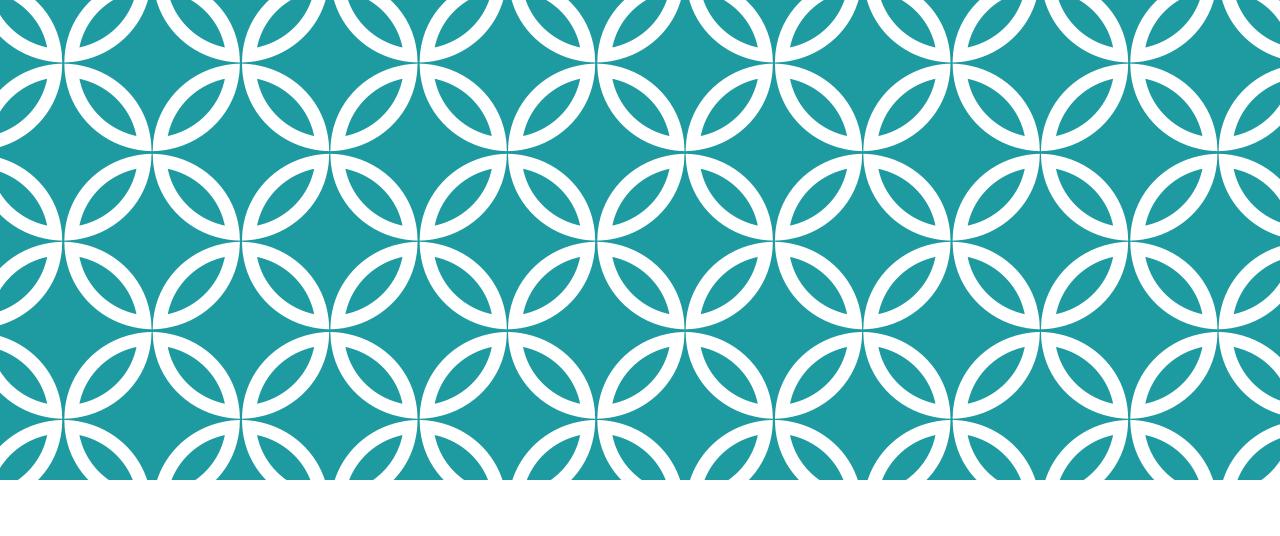
Package Installation

```
pip install dash==0.20.0
pip install dash-renderer==0.11.3
pip install dash-html-components==0.8.0
pip install dash-core-components==0.18.1
pip install plotly --upgrade
```

Run the barchart example

Download the files from Canvas, extract them into a folder.


Open up your terminal from the folder and run:


python 01_dash-barchart-demo.py

Then open up your browser and go to

http://127.0.0.1:8050

to see if you can see the page like the right screenshot

Barchart code Explanations

```
1. Import modules
                                                  import dash core components as dcc
                                                  import dash html components as html
                             2. Data ·
                                                 hashtags in order = ['#Oscars', '#Oscars2016', '#Oscar', '#KCA', '#GOT7', '#ICD', '#UCL'
                                                 counts in order = [10886, 4184, 3602, 2435, 1953, 1501, 1471, 1262, 1194, 1029, 1014]
3. Initialize Dash environment
                                                 app = dash.Dash()
                                                app.layout = html.Div(children=[
4. Set the layout of the page
                                                     html.H1(children='Hello Dash for HCDE 530'),
          4.1. Set H1 title and text
                                                     html.Div(children='''
                           description
                                                         This is a simple Dash application for HCDE 530
                                                     dcc.Graph (
                                             24
                                                         id='example-graph',
                                                         figure={
                                                             'data': [
                                                                 {'x': hashtags in order, 'y': counts in order, 'type': 'bar'},
                4.2. Set the barchart
                                                             'layout':
                                             34
                                                                 'title': 'Top Oscar 2016 hashtags on Feb 23, 2016'
                                                      name == ' main ':
          5. Start the Dash app
                                                     app.run server (debug=True)
```

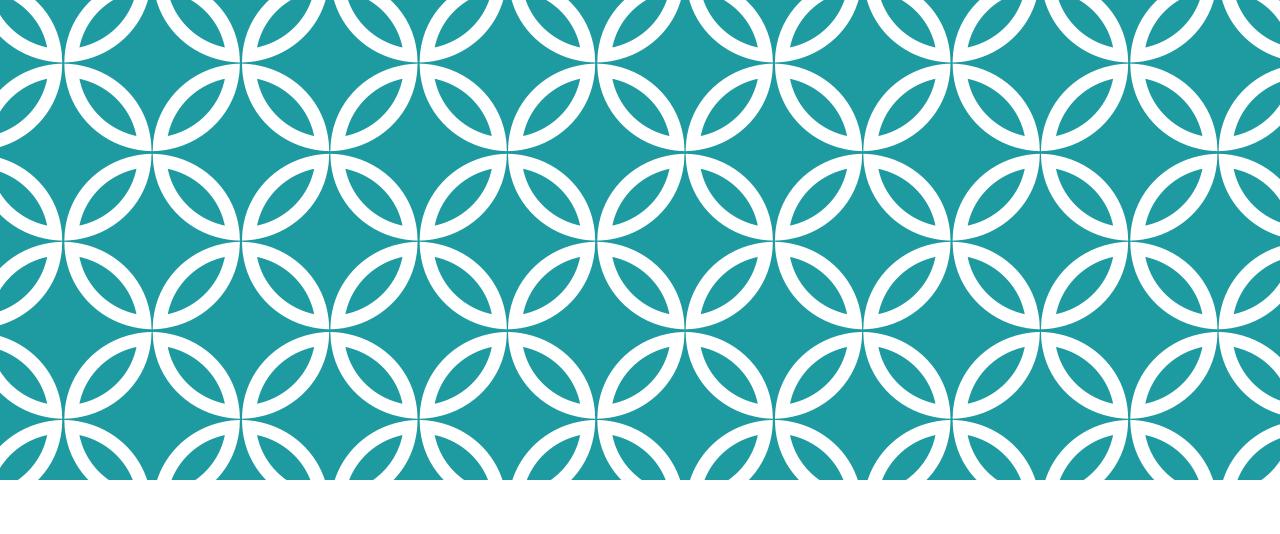
```
1. Import modules
                                   import dash core components as dcc
                                   mport dash html components as html
3. Initialize Dash environment
4. Set the layout of the page -
                      # -*- coding: utf-8 -*-
                     import dash
                      import dash core components as dcc
                      import dash html components as html
                   These are modules from Dash that we will use in our demo example
       5. Start the Dash app
```

```
1. Import modules
                                        hashtags in order = ['#0scars', '#0scars2016', '#0scar', '#KCA', '#GOT7', '#ICD', '#UCL'
                       2. Data
                                        counts in order = [10886, 4184, 3602, 2435, 1953, 1501, 1471, 1262, 1194, 1029, 1014]
3. Initialize Dash environment
4. Set the layout of the page
            hashtags in order = ['#Oscars', '#Oscars2016', '#Oscar', '#KCA'
            counts in order = [10886, 4184, 3602, 2435, 1953, 1501, 1471, 13
                                                  Data can come from anywhere -
                                                  computation, files, user inputs, streaming APIs.
                                                  In this case, we use hard-coded strings and numbers.
                                                  But as long as we have data, we can use them to create visualization.
                   #Oscars2016
                                          #GOT7
```

```
1. Import modules
3. Initialize Dash environment 🕂 🔡
                                       app = dash.Dash()
4. Set the layout of the page -
                              app = dash.Dash()
                   By Line 11, app is now an instance of Dash's environment that we can manipulate.
        5. Start the Dash app
```

```
1. Import modules
3. Initialize Dash environment
4. Set the layout of the page -
                                                      app.layout = html.Div(children=[
                            14 = app.layout = html.Div(children=
                                   html.H1(children='Hello Dash for HCDE 530'),
                                   html.Div(children='''
                                      This is a simple Dash application for HCDE 530
                                      id='example-graph',
                                            {'x': hashtags in order, 'y': counts_in_order, 'type': 'bar'},
                                            'title': 'Top Oscar 2016 hashtags on Feb 23, 2016'
                              From Line 14 to Line 38, we are setting the layout of the page.
```

5. Start the Dash app


```
1. Import modules
                                                                                    Dash
                                                                                     C 127.0.0.1:8050
                                                                               Hello Dash for HCDE 530
3. Initialize Dash environment
                                                                                This is a simple Dash application for HCDE 530
4. Set the layout of the page -
                                                html.H1(children='Hello Dash for HCDE 530'),
         4.1. Set H1 title and text
                                                html.Div(children='''
                        description
                                                   This is a simple Dash application for HCDE 530
                                        20
         5. Start the Dash app
```



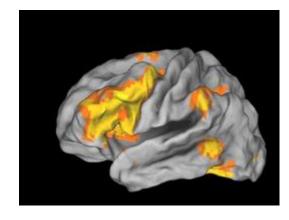
```
1. Import modules
3. Initialize Dash environment
4. Set the layout of the page -
       5. Start the Dash app
                                         app.run server (debug=True)
```

Exercise: Load data from a json file and create a barchart

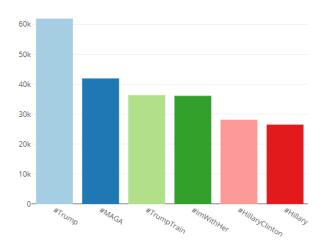
See instructions in 02_dash-barchart-exercise.py

Basic Visualization Concepts with Real Examples

Essence of Visualization: Using visual attributes to represent data

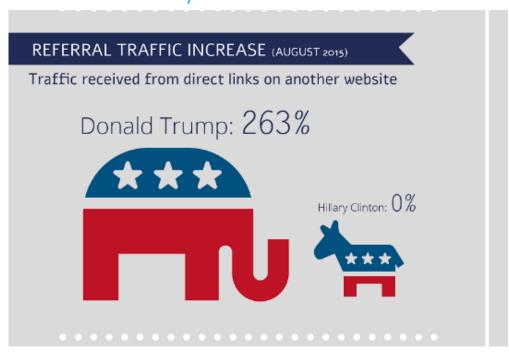

Scientific visualization

Visualize things that have natural shapes

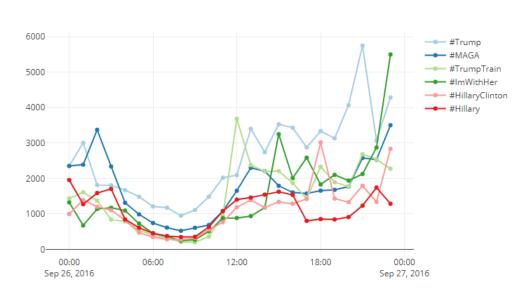

Information visualization

Map visual attributes to various abstract data dimensions/information (i.e., design visual encoding of data)

Election 2016 top 6 hashtags on Sept 26, 2016



http://prefrontal.org/blog/wp-content/uploads/2009/04/caret.png


Purposes of Visualization

Presentation / Communication

Analysis / Exploration

Variable types vs. Visual Attributes

Variable types

Nominal

 Categories that cannot be compared (e.g., names and labels)

Ordinal

 Categories that have orders (e.g., meat quality levels) but the diff. values are not meaningful

Quantitative - Interval

 Continuous variables where the differences are comparable, but there is no absolute zero point (e.g., date) so the ratio of two values is not meaningful

Quantitative - Ratio

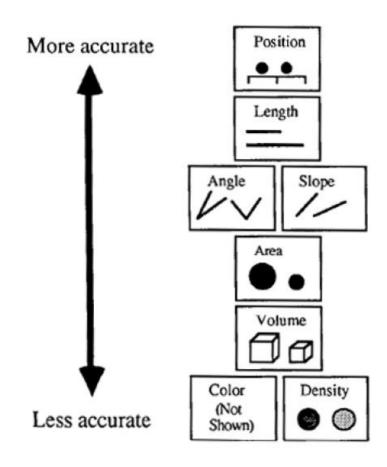
Interval variable + absolute zero points (e.g., length)

Visual attributes

Position

Size (length/area/volume)

Orientation (angle/slope)


Density (lightness/opacity)

Shape

Texture

Color

Not all visual attributes are the same

Mackinlay, APT (A Presentation Tool), 1986

Visual attribute rankings https://richardbrath.wordpress.com/2015/10/05/meta-ranking-of-visual-attributes-in-data-visualization/

Visual Attribute Rankings by Encoding showing each researchers' rank and an overall average score (lower is better match)

	QUANTITATIVE					ORDERED						CATEGORICAL							
Visual Attribute:	Researcher: Ber67	Mac86	Mac06	Mac96	Maz09	Avg Score*	Ber67	Mac86	Mac06	Mac96	Maz09	Avg Score*	Ber67	Mac86	Mac06	Mac96	Maz09	Avg Score*	
Position	Yes	1	- 1	good	suitable	1.2	Yes	- 1	- 1	good	suitable	1.1	Yes	- 1	- 1	good	limited	1.9	
Size (inc length, area, vo	olume) Yes	2	2	good	suitable	1.8	Yes	7	5	good	limited	4.5	no	8	6	good	not	6.9	
Angle (inc slope, orienta	ation) no	3	3	margina	l limited	5.6	no	8	6	margina	l limited	7.4	Yes	9	7	good	not	5.8	
Brightness (value, inte	ensity) no	4	4	margina	l limited	6.2	Yes	2	2	good	suitable	1.7	no	5	4	poor	not	7.4	
Color Hue	no	6	6	margina	l not	8.2	no	4	4	margina	l not	6.7	Yes	2	3	good	suitable	1.8	
Shape	no	no	no	poor	not	9.0	no	no	no	poor	not	9.0	Yes	7	2	good	suitable	2.5	
Texture	no	no		margina	I	7.0	Yes	5		margina	I	3.9	Yes	3		good		1.7	
Saturation		5	5	margina	I	6.7		3	3	good		3.0		6	5	poor		7.1	
Arrangement† (inc o	connection, cor	no		poor	not	9.0		6		poor	not	8.3		4		margina	l not	6.0	
Crispness / Resolution			poor					good						poor					
Transparency			poor					good						marginal					
Curvature					limited							not							
Added marks not							not							suitable					
Numerosity suitable							suitable							not					
Concavity/Convexity limited						limited							not						
Flicker						not							limited						
Motion			limited					limited						not					

^{*} A lower score indicates a better match. Avg score only provided if more than one author lists attribute

[†] Arrangement includes connection, containment, and spatial grouping

^{**} Table should be updated with Illinsky and Munzner

Interaction

Pointing / Selecting

- Mouse over
- click

Filtering / Searching

Navigation (Zoom, pan, scale, rotate)

Sorting

Brushing & Linking

- Brushing: Selecting a subset of points
- Linking: Points or ranges are linked with the selected points

https://plot.ly/dash/interactive-graphing

Dash has a lot of these interaction techniques by default

Ben Shneiderman's Visualization Mantra:

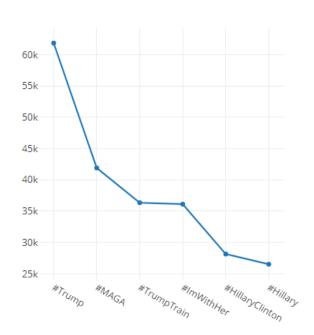
Overview first, Zoom & Filter,
Details on Demand

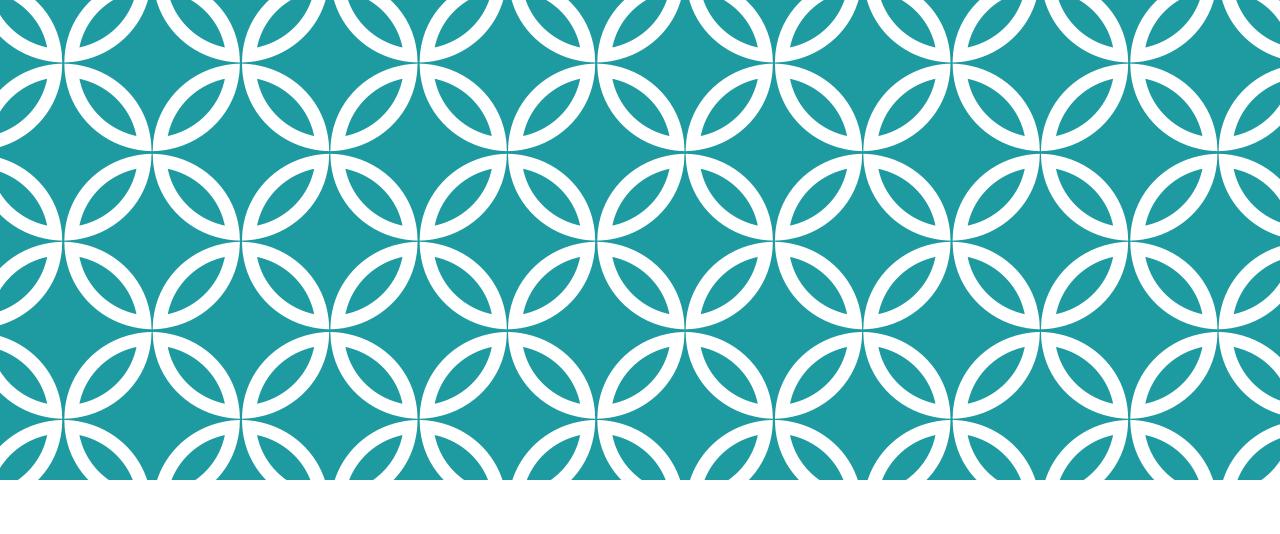
Animations & Transitions

Need to be used carefully, but when use properly, they help keep context See GapMinder:

- https://www.ted.com/talks/hans rosling shows the best stats you ve ever seen
- https://plot.ly/python/gapminder-example/

Two DONTs

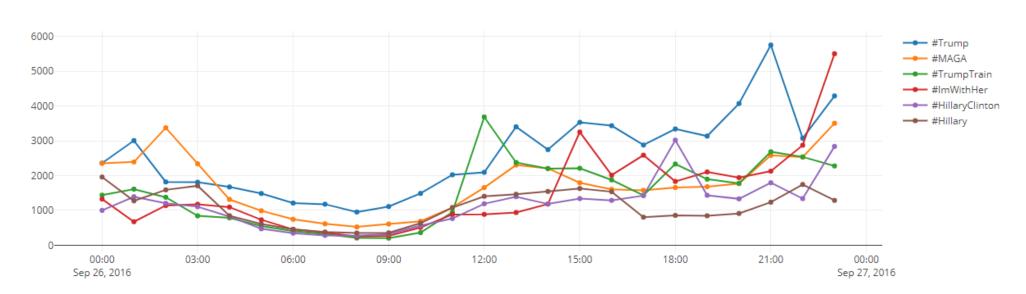

No pie chart, especially 3D pie charts


2.79% 4.12% 3.72%

https://www.infragistics.com/samples/WebImages/windowsforms/Controls/chart/windows-forms-chart-3d-pie-chart-enus.png

No line charts for categorical data

Election 2016 top 6 hashtags on Sept 26, 2016

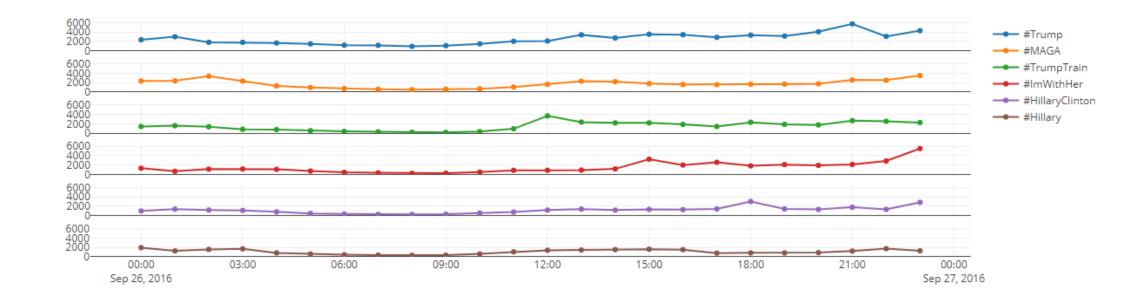

Other Chart Examples

Line Chart 03_dash-election2016-linechart.py

Line Chart

A demo to show a line chart.

Election2016 Hashtag Trends

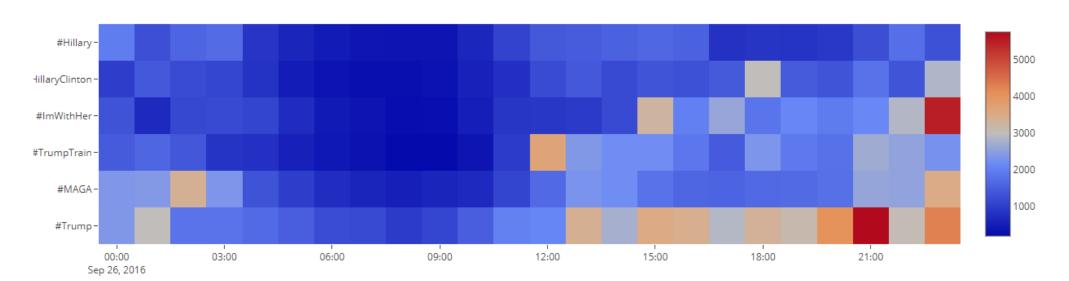


Small multiples

04_dash-election2016-small-multiples.py

Small Multiples

A example of small multiples using top hashtag trends on Sept 26, 2016.

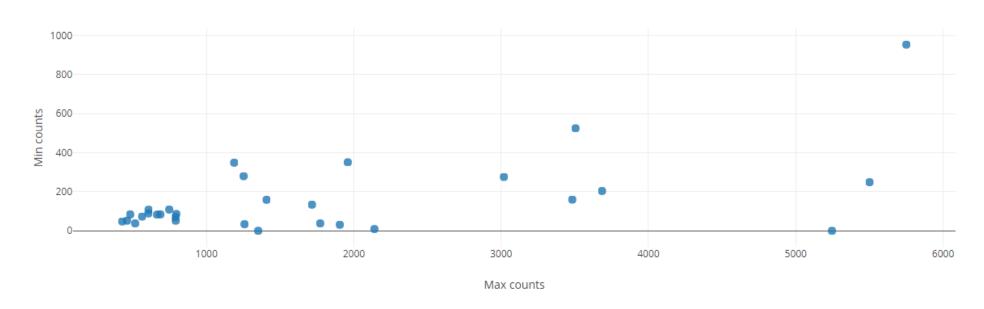

Heatmap

05_dash-election2016-heatmap.py

Heatmap

A demo to show a heatmap.

Election2016 Hashtag Trend Heatmap



Scatter Plot 06_dash-election2016-scatter-plot.py

Scatter Plot

A demo to show a scatter plot.

Min & Max Hourly Counts of Election 2016 Top 30 Hashtags on Sep 26, 2016

Wrap Up...

In today's lecture, we have learned...

Basic Setup and Usage of Dash/Ploty

- Barchart
- Linechart
- Small multiples

Basic Visualization Concepts

Before the next class

Think about how you would want to visualize your data

Bring some small & hand-generated mock data

We will learn some more advanced uses of Dash and let you work on your mock data!

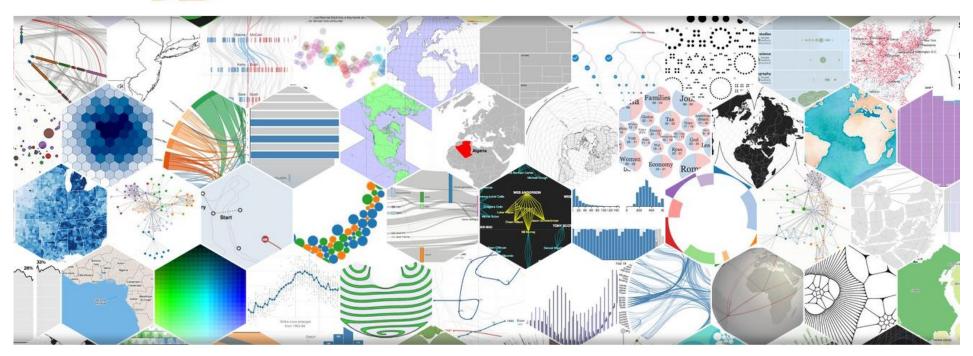
References for Plotly & Dash

Plotly.py

https://plot.ly/python/getting-started/

Dash Website

https://plot.ly/dash/


Dash Official Tutorials

https://plot.ly/dash/getting-started

D3.js Gallery

https://github.com/d3/d3/wiki/Gallery

