INFO 341 ASSIGNMENT 2 - EXTENDING A THREAD
DUE: FRIDAY OCTOBER 19, 2012 BY 10:00PM

In this assignment you will learn a little bit about thread and threading. Threads are
conceptually like small software CPUs. The idea is that a thread executes a small amount of
code, taking input and generating output. The value of having a number of threads is that
when some bit of [/O requires that the thread wait, one waiting thread will not necessarily
cause all other thread to stop running. In Assignment 1, when the console application was
waiting for the user to type input, nothing else would happen until the user entered a
command. Threads allow your program to do possibly many things all at the same time.

Task 1 - TickTock Thread

Extend the Java class Thread to create a class called TickTock. Each time a specified
interval passes (expires), you should print the name of the thread, the current time and
date to the screen. You should design your TickTock thread so that when you instantiate
the thread you can give it a “name” which will just be a string that you choose. Your thread
should have a method called “set_interval” that allows you to specify a number of minutes
and seconds that should pass between each interval expiration.

An example TickTock thread running with an expiration every 5 seconds would generate
output like:

Thread:TickyTocky Fri Sep 21 18:35:01 PDT 2012

Thread:TickyTocky Fri Sep 21 18:35:06 PDT 2012

Thread:TickyTocky Fri Sep 21 18:35:11 PDT 2012

Thread:TickyTocky Fri Sep 21 18:35:16 PDT 2012

Thread:TickyTocky Fri Sep 21 18:35:21 PDT 2012

Thread:TickyTocky Fri Sep 21 18:35:26 PDT 2012

Task 2 - Subclass TickTock Thread as TimedCounter

Extend your Java TickTock class to create a class called TimedCounter.
TimedCounter will maintain a counter variable and an increment variable. Each time the
interval timer expires, the counter variable should be increased by the increment and print
the current value of the counter variable to the screen - prefixed with the thread name, the
current time and date. As with the TickTock class, you should design TimedCounter so
that when you instantiate the thread you can give it a “name” which will just be a string
that you choose. Additionally, the subclass should have a method called “set_increment”
that allows you to set an arbitrary increment.

An example TimedCounter thread running with an expiration every 1 minute and 10
seconds, and an increment of 13 would generate output like:

Thread:Inky Fri Sep 21 18:41:58 PDT 2012 - counter: 13
Thread:Inky Fri Sep 21 18:43:08 PDT 2012 - counter: 26
Thread:Inky Fri Sep 21 18:44:18 PDT 2012 - counter: 39
Thread:Inky Fri Sep 21 18:45:28 PDT 2012 - counter: 52
Thread:Inky Fri Sep 21 18:46:38 PDT 2012 - counter: 65

INFO 341 Assignment 2 - Extending a Thread 1



Task 3 - Counter Demo Program

Modify your Console application from Lab Assignment 1 to demonstrate your
TimedCounter class. Your modified Console should implement a command “counter”
that takes two parameters. The first parameter is the expiration time in minutes and
seconds formatted as M:S and the second parameter is an integer increment. The user
should be able to create two TimedCounters using the “counter” command. Each
TimedCounter thread should be programmatically assigned a unique name. If two
TimedCounter threads are already running then the console should generate a
reasonable error message. Remember that your Console should halt cleanly when the
user executes that “halt” command. Stopping threads can be tricky.

Task 4 - (Optional) Unlimited TimedCounters

Modify your Console application to allow the user to start an arbitrary number of
TimedCounters. Remember, you need to be able to successfully halt all of the running
TimedCounters and exit the Console cleanly on a “halt” command.

Assignment Turn In

Your Java code should compile and run correctly from the command line. If you use a
development environment, you should make certain that your code will compile and run
from the command line.

All of your Java classes should be ina package thatis named by your lastname and the
last three digits of your student ID. So if your last name was “McStudent” and the last three
digits of your student ID were “820” your code would include a statement like:

package mcstudent820;

If you have your Java CLASSPATH variable set correctly you would be able to run your
Console from the command line by typing:

java mcstudent820.Console

You will turn in your Java source files as one Zip file. Since packages are assumed to be in
directories that are named the same as the package (e.g., in the example above, your code
would be in a directory named “mcstudent820”) you can just Zip that directory and submit
the single file through the course Catalyst Dropbox. Absolutely no assignments will be
accepted through email.

INFO 341 Assignment 2 - Extending a Thread 2



