

Packet Collisions

+What is a packet collision?

+ What happens when packets collide?
+How does a machine respond?

Overriding Concept

+ The "Segment"
+A segment is a contiguous unit of a medium in which a packet collision might occur.
+ A single piece of cable that forms a bus

Maximum Segment Length

+ For a given medium segment has a max length + Why?

Media Type	Name	Length
Thicknet (coax)	10 base 5	500 m
Thinnet (coax)	10 base 2	200 m
UTP	100 base T	100 m
Fiber	1000 base FX	1.5 km

Maximum Segment Length

+ For a given medium segment has a max length + Why?
+ Signal attenuation
+ Distance a packet can travel in a given time

Media Type	Name	Length
Thicknet (coax)	10 base 5	500 m
Thinnet (coax)	10 base 2	200 m
UTP	100 base T	100 m
Fiber	1000 base FX	1.5 km

LANs have limited Size

\pm The size of a LAN is limited by the type of the medium.
+What's the largest LAN we could build?

LANs have limited Size

+ The size of a LAN is limited by the type of the medium.
+What's the largest LAN we could build? +What's the largest segment length?

LANs have limited Size

+ The size of a LAN is limited by the type of the medium.
+What's the largest LAN we could build?
+What's the largest segment length?
+ What if we could hook two or more segments together?

Connecting Segments

+ Repeaters
+ Bridges
+ Hubs
+ Switches

Repeaters

+ Do exactly what their name implies
+ Regenerate the signal so that it can travel a longer distance
+ For example you could extend the maximum length of a 10Base5 thicknet network from 500 meters to 1000 meters by installing a repeater at the end of one segment
+ Thick Ethernet can have a maximum of 5 segments, 2500 meters total cable length

Repeater example

Bridge

\pm Regenerate the signal so that it can travel a longer distance

+ A bridge keeps track of which devices are on different segments
+A bridge only retransmits signals when the sender and receiver are on different segments

Bridge

+ Bridges maintain a "bridge table" that keeps track of what addresses are on each side of the bridge
+ Bridges help control congestion and can improve performance on a network +Why?

How Bridges Learn

† Bridges learn by watching the traffic that is on the network
+Bridges start by acting like a repeater, sending out all traffic
+Consider an example ...

Building A Bridge Table

Building A Bridge Table

Building A Bridge Table

Building A Bridge Table

Dest	Src	Payload
$08: 0 \mathrm{~A}$	$02: 2 \mathrm{C}$	data

Building A Bridge Table

Building A Bridge Table

Congestion

+ When a segment has lots of traffic (and lots of collisions) we say it is "congested"
+Now that you' ve seen an example, how does a bridge help control congestion?

Hubs

+ Essentially a "multi-port repeater"
+ Propagates all the data on one cable to all the others connected there
+ Comes in a variety of shapes and sizes with a varying number of ports.
+ One port is often an "uplink" or "cross-over" port for connecting a series of hubs

Context

+ Connecting large numbers of machines
+WANs span large distance
+Bridging, repeating
+Traffic control, congestion control
+ Basic problem, how to make sure packets are delivered?

How do we hook up a bunch

 of machines?\pm Maybe we could just use switches?

What if it got really big?

+What are the limits of this design?

Problems with huge 'switched' networks

+Physically this looks to be hierarchical, but it is not

+ Logically, the fully switched design is a 'flat' addressing space
+Every switch needs to know exactly what addresses exist on each port.
+ Limitation is memory - the tables get too big

Potential Problems with
 Cycles

+ As you add bridges (switches) you might accidentally create a cycle

+ Why is this a problem?

Potential Problems with
 Cycles

+ Switches must pass all broadcast packets
+Switches can' t tell which broadcast packets they have seen and which are new
+ May cause a broadcast storm that completely saturates the network
+ Some switches support the "spanning tree algorithm" to detect a cycle and cut it

Routers

Routers are special equipment helps traffic control

+ Translate traffic between different types of network hardware (the whole world is not Ethernet)
+ Routers often store and forward packets
+ memory in the router allows the router to store the packet, inspect/analyze the packet and then forward it to the destination

Routers and large networks

+ While it is possible to build large networks using just switches, traditionally routers are used instead due to their ability to better control traffic and their ability to interconnect different network types
+ Routers however are much more expensive
+ Routers have to understand the higher level protocols, they don' t just use MAC addresses so they must have fast CPUs.
+ Even the fastest router may not be as fast as a LAN switch since the switches job is much simpler, so a router based network could potentially be slower than a switched based network

Distinction

Switched LAN vs Packet Switched Network

+ Previously, we talked about LAN switches and how they can help with congestion
+ LAN switches, Level 2 devices
+ Now, we' re talking about packet switching - in general, routers perform packet switching
+ Routers, Level 3 devices
+ The term 'switched' means different things in different contexts

The Role of Routers

+ The role of routers in a network
+ Traffic cop
+Connect different types of networks
+ How is this done?
+First, a simple packet switching network...

A Small Abstract Network (SANet)

+ SANet is not a real network, just a small example to facilitate some networking concepts
+ SANet is composed of computers and routers
+ SANet has packet structure and numerous possible interconnection topologies

SANet Packets

+ SANet has a frame structure composed of
+ Destination address
+ Source address
+ Payload
+ Checksum

Address Structure

Packet Structure

| Dest | Source | Payload (16 octets) | Checksum |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{0 2 . 0 4 . 0 1}$ | $\mathbf{0 1 . 0 2 . 0 1}$ | 00:00:00:00:00:00:00:00:00:00:00:00:00:00:00:00 | $00: 00$ |

SANet Router/Packet Switch

Routing Packets (SANet)

+ SANet addressing is an example of hierarchical addressing
+ The address tells you something about the structure of the network
+ Next-Hop
+ Examine the first part of the address
+ Table lookup determines where the packet is sent
+ But how is a route determined/found?
+ Graph Theory

Routing Packets

+Common Approaches
+Static routing - fixes routes at start up sometimes set by hand
+Dynamic routing - programmatically build the route table

+ Often rely on graph theoretic approaches
+Link State Routing (LSR)
+ Distance-Vector Routing (DVR)

$$
\begin{aligned}
& \text { Networks as Graph Theory } \\
& \text { + Networks are a concrete } \\
& \text { representation of mathematical graph } \\
& \text { theory } \\
& \text { + In graph theory a graph is: } \\
& \text { + nodes } N=\left\{n_{1}, n_{2}, n_{3}, n_{4}, \ldots n_{n}\right\} \\
& \text { +edges } \mathrm{E}=\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{3}, \mathrm{e}_{4}, \ldots . e_{n}\right\} \\
& \text { +a function determining edge incidence }
\end{aligned}
$$

Graphs

+ A graph of the SANet architecture

$$
+ \text { nodes } N=\{1,2,3,4\}
$$

$$
\text { +edges } E=\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}
$$

$$
\begin{aligned}
& +e_{1}=(1,3) \\
& +e_{2}=(2,3) \\
& +e_{3}=(3,4) \\
& +e_{4}=(2,4)
\end{aligned}
$$

Weighted Graphs

\pm A weighted graph is one where the edges have some weight or value associated with them
+Networks have various edge weights
+Transmission speed (distance vector)
+Transmission latency (distance vector)

+ Link live (link state/status)

