INFO 341 PROJECT TWIT - PART 2

DUE: FRIDAY NOVEMBER 16, 2012 BY 10:00PM

During this project you will be building a peer-to-peer version of a microblogging
application. An example of microblogging is Twitter.

For Part 2 of this project you will extend the code you wrote in Part 1 so that it can do three
critical things: maintain a persistent user profile, maintain a list of individuals who are
“following” the local user (peer), and process incoming requests from remote peers. Part 2
of the project has been broken into 4 tasks. When you have completed all of the tasks you
will have a solution to Part 2.

You may use the code from Part 1 provided by the instructor and build your own Part 2
based on the instructor’s solution to Part 1. However, if you choose to use the instructor’s
code your solution to Part 2 will be charged 10% of the total possible points for Part 2. If
you were not successful with Part 1, this will allow you to continue working on the project
to complete Part 2. Note that you can *read™ the instructor’s solution for free.

Part 2, Task 1 - Persistent User Profile

The software running at the local peer needs to maintain some persistent state. We will

keep a “profile” of the local user. A profile is a set of named fields with field values. A user

profile for our system will consist of six fields:

UserName - the user’s name, an arbitrary string.

UserID - aunique ID number assigned to each user in hex.

UserMotto - a motto that the user can set, a string.

UserURL - a URL to the user’s website.

DNSSDServiceName - a string service name to be used in Part 3 of the project. For now,
you should set this String to the value “twit”.

ProtocolPort - the protocol port number that is used by this peer to listen for incoming
connections.

The user profile should be an editable text file, stored in the local directory with your other
Java files. The file should be called “profile.txt”.

You should modify your Console class so that it can accept five new commands:

setName <username> - to set the username for the current user profile.
setID <id> - to setthe unique ID for the current user profile.
setMotto <motto> - to set the Motto for the current user profile.
setURL <url> - to setthe URL for the current user profile.
showProfile - should print/list all of the fields of the current profile.

INFO 341 Project TWIT - Part 2 1



There are some special characters that should not be allowed. The “#”, “,”, “=” and “@”
(hash, comma, equal, at sign) should not be allowed in any of the username, userID, motto,
nor URL strings. This restriction simplifies parsing and processing. In a commercial system,
this restriction could be removed.

Modifications made to the user profile through commands at the Console should persist
from one run to the next. That is, you need to make sure you can save and reload the profile
fields each time the code is run. A sample profile. txt file is available from the project
web page. The structure of your profile file does not have to be identical to the sample file.

Part 2, Task 2- Persistent Follower List

Since we're building a peer-to-peer microblogging system (similar to twitter), each local
peer needs to remember who is “following” it so that when a status message should be
distributed it can look for those peers on the network and deliver the status message. Thus,
you need to create a mechanism for maintaining a persistent list of peers who are following
the local peer.

For each follower, the local peer needs to minimally maintain a friendly representation as a
String. For convenience, we will call the friendly representation “userName”. A userName is
not guaranteed to be unique, so the local peer should also maintain a special unique ID for
each follower. In Part 3 we will describe how those unique IDs are assigned, for now you
can use any value you like as long as your follower list enforces uniqueness for the ID.

You should modify your Console object so that it can accept an additional command:
showFollowers - should print/list all of the remote peers who are following the local
peer.

The entries in the followers list come from protocol commands that are received by the
local peer from remote peers. The protocol commands that add and remove followers is
specified in Part 2, Task 3 - Building a Protocol (below).

The follower list should be saved as a user editable text file, stored in the local directory
with your other Java files. The file should be called “followers.txt” to indicate what it
is and that it is user readable. Your persistent follower list should allow the insertion and
removal of followers. And, like the profile, you need to be able to save and reload the list
each time the code is run. A sample followers.txt file is available from the project web
page. The structure of your followers file does not have to be identical to the sample.

Part 2, Task 3 - Building a Protocol

You need to implement a protocol for the peer-to-peer service. A protocol specifies exactly
how two peers are to communicate with each other over the network. The protocol
specifies what commands a peer should be able to send/receive to/from another peer as
well as how a peer should respond to a command that it receives.

INFO 341 Project TWIT - Part 2 2



The following description of the protocol is based on what would happen for the full peer-
to-peer implementation of the protocol. However, in Part 1 you built a simple chat
application that was designed to communicate with exactly one peer. For Part 2 you will
build the protocol with the assumption that there is only one peer active during each
session. This is a simplification to make development easier during Part 2. You should
assume that the active peer is the one that you connect to with the connect command
from the console. This will be expanded in Part 3 to allow many possible peers at once. The
protocol specification is written assuming many peers. However, since you have only one
peer for this part (Part 2) you can make some simplifying assumptions.

The protocol has three basic commands that are sent as text strings and which are
structured to be one line and one line only. The commands are follow, tweet, and
profile.

follow [remove] userName#userID\n

The follow protocol command has two forms. In the first form, the protocol command is
requesting that the specified user (userName#userID) would like to receive tweet
messages from the user at the local peer. This is a persistent follow and the
userName#userID pair should be maintained at the local peer in the follower list. An
example follow command might be:

follow Tommy’'s Tweets#123456ABCD

This is a request that the local peer send future status messages to the user “Tommy’s
Tweets” with a unique userID of “123456ABCD”. If a user with the same unique userID
already exists in the list of followers then the user should not be inserted twice. However, if
the userName is different then the userName should be updated to the new username.
The peer that receives the follow command does not need to reply to or acknowledge the
command.

The second form the follow command includes a command modifier “remove” which
indicates that the specified user should be removed from the list of followers. That is, this
user should be removed from the persistent followers list and should no longer receive
status messages. An example of this command might be:

follow remove Tommy'’s Tweets#123456ABCD

This is a request that the local peer stop sending status messages to the user “Tommy’s
Tweets” with a unique userID of “123456ABCD”.

If the user indicated after the remove command modifier is not in the followers list, then
the command should do nothing.

INFO 341 Project TWIT - Part 2 3



tweet userName#userID#StatusMessageString\n

The tweet protocol command is how a peer sends or receives a status message. When the
local peer receives a tweet protocol command, the text of the StatusMessageString
should be shown to the local user as coming from the user with the specified
userName#userID. The peer receiving the tweet does not need to reply to the tweet
command in any way.

When the local peer wants to send a status message, it should prepend the local
username, a hash character “#”, the userID and a hash character “#” to the status
message and send that message to all of the followers in the persistent follower list who are
currently online.

The text of the StatusMessageString should be limited to a maximum of 140
characters. If a tweet arrives where the StatusMesssageString is greater than 140
characters, the local peer should truncate the text to 140 characters before the status
message is displayed. But a properly behaved client should never send more than 140
characters in a StatusMessageString.

When displaying the StatusMessageString, the display should show that the message
came from the user with userName. The local peer can decide individually whether or not
it will also display the userID.

profile [request userID | <profiledata>]\n

The profile protocol command has two forms. If the command profile is followed by
the command modifier request and a userID, then this is a request from a remote peer
for the profile of the user at the local peer. The userID indicates the online peer making
the request. A sample profile request might look like:

profile request ££30116d00

This is simply a profile request by the user with the userID of ££30116d00 for the
profile of the user at the local peer.

In response to the profile request, the local peer should send a response starting
with the protocol command profile followed by <profile data>. Profile data consists of
the four user profile fields, UserName, UserID, UserMotto, and UserURL as a comma
separated list of key#value pairs. For example in response to a profile request
command, a local peer might send (note that the line is long for this printout, it is sent as a
single line, no carriage returns and no newline characters in the middle):

profile UserName#Tommy’'s Tweets,UserID#123456ABCD,
UserMotto#WTF?,UserURL#http://www.surf-righteous-waves.net

The key#value pairs can occur in any order. If a field in the local profile is empty, then the
corresponding key#value pair should be omitted from the response.

INFO 341 Project TWIT - Part 2 4



Note that there are several aspects of this protocol that have been underspecified. For
example, what should happen if a “profile” response is improperly formatted? There are
other gaps in this protocol. The protocol for this project is not meant to be a fully
elaborated and complete protocol. This is just a small example for the class. When
implementing this protocol you should check for error conditions and do something
reasonable if your local peer receives an improperly formatted protocol command.

Part 2, Task 4 - Modifications to the Console

There are a number of modifications that you need to make to your Console in order for
all of this to work. Many of those modifications are described above in the sections that are
relevant to the specific commands, but the following restates the requirements for those
commands. Your Console needs to be able to process:

setName <username> - to set the username for the current user profile.

setID <id> - to setthe unique ID for the current user profile.

setMotto <motto> - to set the Motto for the current user profile.

setURL <url> - to setthe URL for the current user profile.

showProfile - should print/list all of the fields of the current profile.

showFollowers - should print/list all of the remote peers who are following the local
peer.

There are additional changes that you should make to the console. Now that you have
implemented the protocol, you should modify the Console to process commands that
require the protocol in order to communicate to a remote peer. For Part 2, you are only
connecting to one peer, but in this Task you need to modify the Console to send and receive
protocol commands by implementing the following commands.

status StatusMessageString — the text following the status command at the
command line is set to all followers as a tweet in the protocol. In Part 1 the console
assumed that any text entered at the command prompt, which did not start with a
command, was text to be sent to the remote chat. Messages sent to the remote peer
now need to be preceded by the status command on the console command line.

getprofile - when this is entered at the console command line, you should send the
profile request protocol command to the remote peer, wait for the profile response
and show that profile.

follow -should allow you to start following the specified user of some remote peer. This
should add the local user/peer to the follow list of the remote peer.

unfollow - should allow you to stop following the specified user of some remote peer.
This should remove the local user/peer from the follow list of the remote peer.

Unlike Part 1 of the Project, you can now assume that every line entered on the command
line of your Console will begin with a command. If a line does not begin with a command,

INFO 341 Project TWIT - Part 2 5



then your Console should indicate that the line does not start with a command and list
the available commands.

Turning In

Your Java code should compile and run correctly from the command line. If you use a
development environment you should make certain that your code will compile and run
from the command line.

All of your Java classes should be ina package thatis named by your lastname and the
last three digits of your student ID. So if your last name is “McStudent” and the last three
digits of your student ID were “820” your code would include a statement like:

package mcstudent820;

If you have your Java CLASSPATH variable set correctly you would be able to run your
Console from the command line by typing:

java mcstudent820.Console

You will turn in your Java source files, your profile.txt, and followers.txt files as one Zip file.
Since packages are assumed to be in directories that are named the same as the package
(e.g., in the example above, your code would be in a directory named “mcstudent820”) you
can just Zip that directory and submit the single file through the course Catalyst Dropbox.
Absolutely no assignments will be accepted through email.

INFO 341 Project TWIT - Part 2 6



